Effects of denaturants and osmolytes on proteins are accurately predicted by the molecular transfer model.
نویسندگان
چکیده
Interactions between denaturants and proteins are commonly used to probe the structures of the denatured state ensemble and their stabilities. Osmolytes, a class of small intracellular organic molecules found in all taxa, also profoundly affect the equilibrium properties of proteins. We introduce the molecular transfer model, which combines simulations in the absence of denaturants or osmolytes, and Tanford's transfer model to predict the dependence of equilibrium properties of proteins at finite concentration of osmolytes. The calculated changes in the thermodynamic quantities (probability of being in the native basin of attraction, m values, FRET efficiency, and structures of the denatured state ensemble) with GdmCl concentration [C] for the protein L and cold shock protein CspTm compare well with experiments. The radii of gyration of the subpopulation of unfolded molecules for both proteins decrease (i.e., they undergo a collapse transition) as [C] decreases. Although global folding is cooperative, residual secondary structures persist at high denaturant concentrations. The temperature dependence of the specific heat shows that the folding temperature (T(F)) changes linearly as urea and trimethylamine N-oxide (TMAO) concentrations increase. The increase in T(F) in TMAO can be as large as 20 degrees C, whereas urea decreases T(F) by as much as 35 degrees C. The stabilities of protein L and CspTm also increase linearly with the concentration of osmolytes (proline, sorbitol, sucrose, TMAO, and sarcosine).
منابع مشابه
An effective solvent theory connecting the underlying mechanisms of osmolytes and denaturants for protein stability.
An all-atom Gō model of Trp-cage protein is simulated using discontinuous molecular dynamics in an explicit minimal solvent, using a single, contact-based interaction energy between protein and solvent particles. An effective denaturant or osmolyte solution can be constructed by making the interaction energy attractive or repulsive. A statistical mechanical equivalence is demonstrated between t...
متن کاملOptimizing refolding condition for recombinant tissue plasminogen activator
Low molecular size additives such as L-arginine and the redox compounds have been used both in the culturemedium and in vitro refolding to increase recombinant proteins production. Additives increase proteinrefolding and yield of active proteins by suppressing aggregate formation or enhancing refolding process.In this work, a comparative study was performed on refolding of rec...
متن کاملConformational Ensembles of α-Synuclein Derived Peptide with Different Osmolytes from Temperature Replica Exchange Sampling
Intrinsically disordered proteins (IDP) are a class of proteins that do not have a stable three-dimensional structure and can adopt a range of conformations playing various vital functional role. Alpha-synuclein is one such IDP which can aggregate into toxic protofibrils and has been associated largely with Parkinson's disease (PD) along with other neurodegenerative diseases. Osmolytes are smal...
متن کاملAnalytical determination of the chemical exchange saturation transfer (CEST) contrast in molecular magnetic resonance imaging
Magnetic resonance based on molecular imaging allows tracing contrast agents thereby facilitating early diagnosis of diseases in a non-invasive fashion that enhances the soft tissue with high spatial resolution. Recently, the exchange of protons between the contrast agent and water, known as the chemical exchange saturation transfer (CEST) effect, has been measured by applying a suitable pulse ...
متن کاملModeling heat transfer of non-Newtonian nanofluids using hybrid ANN-Metaheuristic optimization algorithm
An optimal artificial neural network (ANN) has been developed to predict the Nusselt number of non-Newtonian nanofluids. The resulting ANN is a multi-layer perceptron with two hidden layers consisting of six and nine neurons, respectively. The tangent sigmoid transfer function is the best for both hidden layers and the linear transfer function is the best transfer function for the output layer....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 36 شماره
صفحات -
تاریخ انتشار 2008